Topology-Driven Vectorization of Clean Line Drawings

GIOACCHINO NORIS

ETH Zurich and Disney Research Zurich
ALEXANDER HORNUNG and ROBERT W. SUMNER
Disney Research Zurich

MARYANN SIMMONS

Walt Disney Animation Studios

and

MARKUS GROSS

ETH Zurich and Disney Research Zurich

Vectorization provides a link between raster scans of pencil-and-paper draw-
ings and modern digital processing algorithms that require accurate vector
representations. Even when input drawings are comprised of clean, crisp
lines, inherent ambiguities near junctions make vectorization deceptively
difficult. As a consequence, current vectorization approaches often fail to
faithfully capture the junctions of drawn strokes. We propose a vectoriza-
tion algorithm specialized for clean line drawings that analyzes the draw-
ing’s topology in order to overcome junction ambiguities. A gradient-based
pixel clustering technique facilitates topology computation. This topologi-
cal information is exploited during centerline extraction by a new “reverse
drawing” procedure that reconstructs all possible drawing states prior to
the creation of a junction and then selects the most likely stroke config-
uration. For cases where the automatic result does not match the artist’s
interpretation, our drawing analysis enables an efficient user interface to
easily adjust the junction location. We demonstrate results on professional
examples and evaluate the vectorization quality with quantitative compari-
son to hand-traced centerlines as well as the results of leading commercial
algorithms.

Categories and Subject Descriptors: 1.3.3 [Computer Graphics]:
Picture/Image Generation—Digitizing and scanning

General Terms: Algorithms, Documentation

Authors’ addresses: G. Noris (corresponding author), ETH Zurich and
Disney Research Zurich; email: gnoris@inf.ethz.ch; A. Hornung, R. W.
Sumner, Disney Research Zurich, M. Simmons, Walt Disney Animation
Studios, M. Gross, ETH Zurich and Disney Research Zurich.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM,
Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1
(212) 869-0481, or permissions @acm.org.

(© 2013 ACM 0730-0301/2013/01-ART4 $15.00

DOI 10.1145/2421636.2421640
http://doi.acm.org/10.1145/2421636.2421640

ACM Reference Format:

Noris, G., Hornung, A., Sumner, R. W., Simmons, M., and Gross, M. 2013.
Topology-Driven vectorization of clean line drawings. ACM Trans. Graph.
32, 1. Article 4 (January 2013), 11 pages.
DOI=10.1145/2421636.2421640
http://doi.acm.org/10.1145/2421636.2421640

1. INTRODUCTION

Raster and vector representations form the foundation upon which
nearly all two-dimensional graphics is built. Raster images can rep-
resent extremely rich detail but do not encode the kind of seman-
tic information that promotes editing. Vector images, on the other
hand, abstract image content as mathematical primitives such as
lines and arcs that facilitate editing but can limit detail. While con-
verting from a vector to a raster representation is a straightforward
sampling operation, the complementary procedure of vectorization
is significantly more difficult since it involves inferring high-level
abstractions from low-level pixel content.

Hand-drawn 2D animation represents one particularly important
application area of vectorization. The expressiveness, efficiency,
and tactile control afforded by real pencil and paper are yet to be
matched by digital drawing tools, and therefore 2D animations are
often still hand-drawn on paper and then scanned. The content in the
resulting raster images cannot be easily edited or used with higher-
level algorithms that require a stroke-based vector representation,
such as computer-assisted inbetweening [Whited et al. 2010]. A
similar problem exists even when digital drawing tools are used,
since artists often build up lines with many short strokes, leading
to an unorganized collection of tiny unconnected segments that are
not amenable to further high-level processing. In this domain, an
automated vectorization approach is essential as a feature animation
can contain hundreds of thousands of individual drawings.

Loose and sketchy drawings contain a great deal of ambiguity
which makes automatic vectorization extremely difficult. At the
other end of the spectrum, “clean” drawings are defined by crisp,
distinct lines and thus present the ideal input for vectorization.
However, even in this case, ambiguities at stroke junctions make
vectorization deceptively difficult. Due to its fixed structure and
limited resolution, the regular grid of a raster image is ill-suited
to represent regions where many strokes come together, overlap,
cross, or join. As a consequence, current vectorization algorithms
often fail at accurately representing junctions.

ACM Transactions on Graphics, Vol. 32, No. 1, Article 4, Publication date: January 2013.

4:2 o G. Noris et al.

a

Fig. 1. Vectorization challenges. Noise (a) and spatially adjacent strokes
(b) require fine-tuning of threshold parameters in existing approaches. Even
for clean, high-resolution input images, the superposition of strokes near
junctions and sharp corners results in inaccurate centerline placement (c).
(Results of Adobe Live Trace for different threshold settings shown in purple
and green.)

The poor quality of junction reconstruction is due in part to the
local nature of existing vectorization algorithms: extracted lines
result solely from the information contained in a fixed-size pixel
neighborhood. In practice, a larger scope is often necessary to un-
derstand the inherent structure of the strokes defining a junction. In
this sense, one can consider these stroke relationships as nonlocal.
Motivated by this observation, we propose a nonlocal vectoriza-
tion algorithm that employs the analysis of a drawing’s topology in
order to extract high-quality centerlines and junctions from clean
drawings.

The first step of our approach analyzes the input image to de-
rive the stroke topology. Here a gradient-based pixel clustering
technique is employed that facilitates the extraction of the correct
topology in undersampled regions of the drawing. This topological
information is exploited during centerline extraction by a “reverse
drawing” procedure that reconstructs all possible drawing states
prior to the creation of a junction and selects the most likely stroke
configuration. If the automatic result does not match the artist’s
interpretation, our drawing analysis enables an efficient user inter-
face to easily adjust the junction location. We demonstrate results
on professional examples and evaluate the vectorization quality
with quantitative comparison to centerlines hand-traced by an ex-
pert artist as well as with side-by-side comparisons to output from
leading commercial methods.

Our system fits naturally into current pipelines to enable vector
processing of scanned drawings. We make the technical contribu-
tions of the gradient-based pixel clustering procedure for accurate
topological analysis as well as the reverse drawing procedure for
producing the most plausible junction configurations. For either
hand- or digitally-drawn input, our work provides a bridging tech-
nology that converts drawings into a format designed for further
editing, automatic inbetweening, or other advanced vector-based
processing algorithms.

2. RELATED WORK

Existing vectorization methods can be roughly classified into two
groups based on whether they are designed to process image or
line data. Techniques for the vectorization of general images make
the assumption that the image content can be represented by a
collection of boundary curves, together with smooth interpolating
functions between the curves. In one family of approaches, the im-
age is first segmented into regions by, for example, triangulation
or using quad-dominant gradient meshes, and then the region inte-
riors are filled with smooth gradients [Lecot and Lévy 2006; Sun
et al. 2007; Xia et al. 2009]. Alternatively, using diffusion curves,
the smooth interior can be computed by solving a Poisson equation
with the curves as boundary constraints [Orzan et al. 2008]. Zhang
and colleagues [2009] present an approach specifically tailored for

ACM Transactions on Graphics, Vol. 32, No. 1, Article 4, Publication date: January 2013.

temporally coherent cartoon animations, while Sykora and cowork-
ers [2005] vectorize regions of cartoon frames for the purpose of
compression. Both address final cartoon frames with all colored
foreground and background layers.

A related problem is the extraction of curve skeletons from 2D
shape boundaries using variational methods [Cornea et al. 2007].
Additional hybrid methods seek to find centerlines in images. In
the field of medical imaging, blood vessel extraction requires iden-
tifying and reconstructing the tubular structures from images and
scans. A range of techniques has been developed [Kirbas and Quek
2000], from pattern recognition, to model-based and tracking-based
methods. In this domain, Whited and colleagues [2009] present a
semiautomatic centerline extraction from networks of strokes that
also works in more general images (e.g., river networks from satel-
lite imagery). While effective for vectorizing general image con-
tent, none of the preceding methods are designed to work with line
drawings and do not sufficiently address the accurate extraction of
centerlines and junctions.

The second group of methods is primarily concerned with vec-
torization of line drawings such as technical layouts. Prominent
approaches are based on tracing [Freeman 1974], thinning [Lam
et al. 1992], or methods utilizing contours or projections such as
the Hough transform [Liu and Dori 1998]. Due to the focus on
technical images, many of these methods are restricted to fitting
straight line segments to input drawings [Janssen and Vossepoel
1997]. Exceptions include the method by Chang and Yan [1998],
which fits Bezier curves, and the method by Zou and Yan [2001],
which focuses on issues such as jaggy line boundaries and junc-
tion points. Hilaire and Tombre [2006] also address robustness and
describe fitting of higher-order primitives such as arcs in addition
to line segments. Their method mainly addresses issues found in
binary technical drawings and cannot be easily generalized to free-
hand sketches. Bartolo et al. [2007] describe an approach based
on Gabor and Kalman filtering in order to convert rough scribbles
into a vectorized representation. When boundaries are well defined,
skeleton methods [Lakshmi and Punithavalli 2009] produce good
vector centerlines that could be used to represent line drawings.
However, distorted skeleton centerlines appear at junctions.

Finally, commercial tools for vectorization of line art include
Toon Boom Harmony, Adobe Live Trace, CoreDRAW, VectorEye,
VectorMagic, and AutoTrace.

In many situations, existing methods and techniques provide
high-quality results. However, strokes drawn very close together
and junctions areas are usually poorly reconstructed. In most cases,
this limitation arises from an algorithm that employs local operators
without considering the overall structure of the drawing. Such in-
formation is needed to accurately reconstruct stroke centerlines and
junction points, and to perform more sophisticated editing opera-
tions such as morphing and inbetweening. In our work we specifi-
cally address these open challenges.

3. OVERVIEW OF APPROACH

The goal of vectorization is to extract stroke centerlines and a net-
work of vector curves and junctions from an input raster image of a
line drawing.

Current vectorization techniques face two major challenges. The
first problem, illustrated in Figure 1(a) and (b), is insufficient local
discrimination of individual strokes due to noise and spatial prox-
imity of strokes. The second problem, which is of a global nature, is
the difficulty of obtaining accurate estimation of centerlines at junc-
tions. Itis a global problem because it requires information about the
drawing topology and stroke configuration (see Figure 1(b) and (c)

Topology-Driven Vectorization of Clean Line Drawings . 4:3

Fig. 2. Method overview. Step 1: First, our algorithm disambiguates the
input pixels using a gradient-based clustering process. Step 2: From the
clusters, the topological skeleton of the drawing is extracted. Step 3: By
utilizing the topological information, our reverse drawing procedure extracts
accurate centerline estimates and junction positions.

and also Figure 5). Both problems compromise centerline estimates
and result in bad vectorization quality using existing techniques.

The algorithm we propose for vectorization of line drawings
addresses these problems with a novel bottom-up analysis, which
translates into three successive processing phases; each step of the
algorithm increases the level of abstraction of the representation,
until accurate centerlines can be reconstructed.

Step 1: Stroke Disambiguation by Clustering. Our first observa-
tion is that, in line drawings, the color gradient at each input pixel
often provides a good local estimate of the center of a nearby stroke
centerline (see Figure 2(a)). We show that a clustering approach,
which moves pixels along the gradient field based on the notion
of gradient “confidence”, enables effective local disambiguation
of strokes (Figure 2(b)) and compares favorably to existing skele-
tonization techniques.

Step 2: Topology Extraction. After clustering, the pixels are con-
nected to form a cluster graph (Figure 2(b)). The second phase
of our algorithm then analyzes this cluster graph to compute the
underlying topological skeleton of the drawing (Figure 2(c)). This
skeleton represents the individual stroke segments, stroke endpoints,
and junctions between stroke segments. The proposed procedure is
based on the computation of minimum spanning trees as an efficient
solution for global topology extraction even on large drawings with
complex cluster graphs.

Step 3: Centerline Reconstruction and Reverse Drawing. Using
the topology of the cluster graph, the centerlines of the drawing

| Stroke
I Profile

L L L L L L L L L

| Gradient J

€
0 oA
€ V

Fig. 3. The gradient threshold ¢ defines two bands of pixels with opposite
gradient directions.

can be extracted (Figure 2(d)). Particular care is taken in inherently
ambiguous regions like junctions. The novelty of this approach is
a topology-driven identification of such ambiguous regions, fol-
lowed by an exploration of all the possible stroke configurations
in a process we refer to as reverse drawing. We first score pairs
of incident stroke segments at a junction and then select the most
likely configurations, based on the assumption that smoothly joining
stroke segments are generally more likely to belong to a continu-
ously drawn stroke than segments joining at sharp angles. Notice
that this step can be applied independently of the previous steps to
improve results obtained, for instance, with robust skeletonization
or thinning algorithms.

The algorithmic details of these three phases, from local stroke
disambiguation to topology-aware reconstruction of centerline con-
figurations, are described in Section 4. Our results and evaluation
in Section 5 demonstrate that our approach resolves the limitations
of existing techniques and results in high-quality vectorization.

4. ALGORITHM
4.1 Clustering for Stroke Disambiguation

Pixels p; of a raster input image can be roughly classified into two
categories, depending on their respective image gradient V;: small
gradients do not carry sufficient information about the stroke center,
while large gradients provide a more confident guess about the
centerline location. Accordingly, we classify each pixel p; as either
stationary: S = {p;||| V|| < €} or moving: M = {p;|||V:|| > €} by
thresholding the gradient norm. The norm threshold value ¢ should
be set to be above the gradient levels of the image noise. All results
presented in this article have been produced with € equal to 10% of
the maximal gradient length.

The basic idea of our stroke clustering is that confident pixels
p; € M move towards the centerline by following the direction
V;.! Although local noise may influence the trajectory of individual
pixels, as long as the gradient noise level is below €, the pixels
converge and cluster towards the centerline (see Figure 3).

For all pixels p; € M, the motion vector is set to m; = §tV;,
where 47 is a constant speed factor, in our implementation equal to
10% of the width of a pixel. This has two consequences: first, the
pixels move in compact bands, and second, centerlines are located

! Gradient directions are kept constant throughout the clustering.

ACM Transactions on Graphics, Vol. 32, No. 1, Article 4, Publication date: January 2013.

4:4 o G. Noris et al.

Fig. 4. Topology extraction and loop fixing (a). topology extraction (b—¢). An Minimum Spanning Tree (MST) is computed (b). Branches of length smaller
than the stroke thickness are removed (c), resulting in a skeletonized version of the cluster (d) from which the final topology of the skeleton is extracted (e).
Loop fixing (f-k). For drawings containing loops (a), the MST computation breaks the loop in at least one location (f). The leaf pruning (g) widens the gap. To
restore the link, for each of the remaining leaves (h) a local MST is computed (local scope: the green circle in a). (i) The local and global MSTs are merged,

and remaining leaves pruned (j), ultimately restoring the loop (k).

where the two opposing bands meet. The stopping condition for each
moving pixel is then naturally given by the motion coherence in its
local neighborhood; for each pixel p; € M the nearest neighbors
N: = {p;llp; — pill < 1} are collected. By looking at the sign
of the dot product of the gradients V; - V;, neighboring pixels
p; € N; are classified either as belonging to the same band (positive
dot product), or the opposing band (negative dot product). The
stopping condition is then defined as having one or more pixels of
the opposing band that traveled past the location of pixel p;, which
can be expressed as (p; — p;) - Vi <O.

The clustering process terminates when the number of moving
pixels drops below 1% of the initial set M. Outliers, such as remain-
ing background and isolated pixels, can be eliminated by removing
those pixels that remained stationary through the whole clustering
process or that have less then 2 neighbors within a 1-pixel radius.
This clustering procedure results in a contraction of the input pixels
around the approximate location of the stroke centerline.

Notice that at this stage it is possible to get an estimate of the
stroke thickness by considering the distance that boundary pixels
traveled. In our implementation we do not explicitly mark pixels as
belonging to the boundary, but rather we store the traveled distance
of each pixel as the approximate local stroke radius r; and take
a conservative estimate by setting it to be the maximum r; of all
p; € N;. This estimate of the local stroke thickness will be utilized
in the subsequent steps of our algorithm.

4.2 Topology Extraction

We are interested in extracting the topology of the drawing. After
convergence, the cluster is a point set that densely samples the
proximity of the drawing stroke centerlines. Instead of applying
techniques from geometry reconstruction, we treat this point set as
a graph, and rely on well-known efficient graph algorithms to extract
a skeleton that explicitly contains the topology of the drawing.

ACM Transactions on Graphics, Vol. 32, No. 1, Article 4, Publication date: January 2013.

The procedure is illustrated in Figure 4. A graph structure (the
cluster graph) is constructed by connecting each clustered pixel p; to
each neighbor p; within the local stroke thickness (see Figure 4(b)).
A weighted edge ¢;; is added for each pair (p;, p;). The weight w(e;;)
of an edge is simply the Euclidean distance w(e;;) = D(p;, p;).

The topological skeleton (endpoints, junctions, connectivity) of
the drawing is then computed by topology-preserving coarsening
of the cluster graph (Figure 4(b)—(e)). First, a Minimum Spanning
Tree (MST) of the graph is computed [Kleinberg and Tardos 2005].
Due to the dense pixel clustering, the MST is characterized by a
number of main branches with many very short branches (“twigs”)
which contribute to the stroke width/detail, but not ultimately to the
topological structure we are seeking. In order to isolate the main
branches, the leaves of the MST are iteratively pruned (Figure 4(c)).
To avoid pruning the entire graph, we keep track of the length of
the branches being removed, and terminate the iteration if deleting
an additional node will make the total length of the removed branch
greater than the local stroke thickness.

By definition, any loop in the drawing will be cut by the global
MST. Figure 4(f)—(k) illustrates a procedure to reliably detect and
close these cuts through the construction of a local MST around
each leaf node. Consider the cut produced by the global MST
(Figure 4(f)). The leaf pruning will erode both sides, widening
the cut up to approximately 2r; (Figure 4(g)). For each leaf node
(Figure 4(h)), we compute local MST (Figure 4(i)) and then apply
leaf pruning (Figure 4(j)). Loop connectivity is restored by taking
the union of the global MST and the local ones (Figure 4(k)).
Notice that this procedure will not affect actual endpoints, as the
local MSTs followed by the leaf pruning will produce the same
initial leaf nodes as the pruned global MST.

‘We now mention a few implementation details. First, an MST cut
generates two leaf nodes, but it is sufficient to apply the aforesaid
procedure to one of the two. Checking if a leaf is still a leaf after
each iteration can save computation time. Second, prior to the com-
putation of the local MST, we zero the weights of the edges that are

Topology-Driven Vectorization of Clean Line Drawings . 4:5

Yeane®

Fig.5. Local ambiguity. A junction (a) and a stroke with varying thickness
(b) cannot be distinguished by considering the local appearance only (c).

in the global MST. This will force the local MST to pick the same
edges and only expand within the gap, avoiding the introduction of
triangular structures or undesired loops. Third, in order to account
for variation in our stroke thickness estimate, we set a conservative
range for the local MST of 4r; (green circle in Figure 4(a)).

The final topological skeleton of the drawing can then be ob-
tained by collapsing all nodes of valence 2 in the graph. Nodes of
valence 1 then correspond to stroke endpoints, nodes of valence > 3
to stroke junctions, and the graph edges represent the topological
stroke segments in the drawing (see Figure 4(e)).

4.3 Centerline Extraction and Reverse Drawing

The main challenge for reconstructing accurate centerline estimates
is ambiguities which cannot be resolved by purely local methods
and hence lead to reconstruction artifacts in existing approaches.
Figure 5 illustrates such an ambiguity where two strokes converge
and cannot be distinguished from a stroke with varying thickness
by considering only a local window. Moreover, even when it is clear
that multiple strokes meet at a junction, one has to choose among a
number of possible configurations (see Figure 6).

In order to address these challenges, our algorithm performs
two steps. First, a set of base centerlines is traced, connecting all
endpoints and junctions according to the drawing topology. We
refer to the processing up to this point as the base method, as
it produces centerlines which in nature are similar to the results
obtained with prior art (see Figure 18). Second, our reverse
drawing procedure (see Figure 7) utilizes the drawing topology to
identify ambiguous regions (e.g., junctions and sharp corners) and
then corrects the centerline estimates by choosing the most likely
centerline configuration among all possible ones.

4.3.1 Base Centerlines. Base centerlines are constructed by
computing the source to destination shortest path on the full cluster
graph. As source and destination points we pick the junctions and
endpoints defined by the drawing topology. Hence, each topology
edge generates a base centerline. The stroke thickness is derived
locally from the selected path nodes.

Two special cases have to be considered: an edge connecting
a junction to itself (loop) and two junctions connected by more
than one edge. For both special cases, in our implementation we
split the edges adding dummy valence-2 junctions (see red node
in Figure 2(c)), forcing the shortest path to take the individual
necessary routes.

The extracted shortest paths are then smoothed by applying a
data-driven smoothing operator which moves the path along the
local curve normal towards the center of mass of the clustered
stroke pixels. For each point p; of a centerline path, a Gaussian
weighting function is used to assign weights to the cluster pixels p;
in the neighborhood. The refined position P; is then given as

Pi < pi + (¢ —p;) -n)"m;, with (1)
o _ ZiWiPs
i Zj w; s

_ D(p;.p;)
andw; =e 2> 2)

where n; is the normalized approximation of the local curve nor-
mal and o = r; to adapt the weighting scheme to the local stroke
thickness (Figure 8). We compute approximate vertex normals by
averaging the normals of the adjacent line segments, and then inter-
polate these normals linearly over the segments.

4.3.2 Reverse Drawing. An overview of the reverse drawing
procedure is illustrated in Figure 7. The first step consists of iden-
tifying ambiguous regions where strokes overlap.

Ambiguous region estimation. For each junction, we iteratively
grow a circle AR at the junction position until the strokes no longer
overlap. The process is summarized by the following steps.

(1) Create a circle AR centered at the junction.

(2) Intersect AR with each adjacent base centerline BC.

(3) Ateach intersection, generate a circle S; of radius equal to the
local stroke thickness (Figure 7(b), blue circles).

(4) If any pair of S; intersects, increase the radius of AR and repeat
from 2. Otherwise stop. (Figure 7(c)).

Continuous centerline construction. Given the ambiguous region
at a junction, the base centerlines inside this region are removed
and replaced by all possible configurations of continuous centerline
candidates (C C's) at that junction (Figure 6(b)—(h)). Given the posi-
tion and curve tangent of the intersections between the ambiguous
region and a pair of base centerlines, a CC is computed as a cubic
Hermite spline (Figure 7(e) and (f)). The normalized curve tangents
are scaled to one third of the distance between the two points.

Stroke curvature. When considering the curvature of strokes, we
observe that different stroke thicknesses (Figure 9(a) and (b)) result
in different perceived curvatures even when the centerline is the
same. As shown in Figure 9(c), we define the stroke curvature o
by sampling the stroke centerline at three points with distance r
(the local stroke thickness) and fitting a circle, computing o =
2arcsin (£).

To compute the stroke curvature o; of a continuous centerline
CC;, we sample CC; uniformly with the sample distance r accord-
ing to the local stroke thickness, and then set «; as the maximum
stroke curvature over the whole curve (see Figure 7(g)).

Centerline selection. Our goal is to connect the base centerlines
(BCs) around an ambiguous region by either picking continuous
centerlines (CCs) only (e.g., Figure 6(f)—(h)), or a combination of
BCs and CCs (e.g., Figure 6(b)—(e)).

In application contexts where fixed alphabets or specific drawing
patterns are defined, junction classes (T, Y, X, etc.) can be asso-
ciated with predefined centerline configurations. However, in line
drawings, the number of such classes is virtually infinite. Figure 10
shows just a few of the many valence-4 junctions that can be found
in line drawings, each one with its own nuances. This makes it
impractical to build a comprehensive classification.

Instead, we opt for a fixed selection scheme that can operate on
any kind of junction (see Algorithm 1). Figure 11 illustrates the
major steps for a valence-4 junction.

This selection scheme favors straight centerlines over curved
ones. The stroke-curvature threshold ¢ discriminates acceptable
continuous centerlines from undesirable sharp turning connections,
which are usually associated with cases where base centerlines stop
at the junction (Figure 6(a)—(d)). In our implementation ¢ is equal
to 50°, an optimal value according to our empirical validation (see
Section 5 and Figure 13).

Spikes. A spike is generally formed by two strokes, drawn in
approximately opposite directions, that overlap in the region of the
tip. Spikes are a special case of valence-3 junctions where one
branch is relatively short. In terms of topology, a junction exists

ACM Transactions on Graphics, Vol. 32, No. 1, Article 4, Publication date: January 2013.

4:6 .

G. Noris et al.

Fig. 6. Junction configurations. This image shows all possible configurations combining the Base Centerlines (BCs) and Continuous Centerlines (CC's)
inside the ambiguous region (black dotted circles). Case “h” is included for completeness, but occurs rarely in practice.

Fig. 7. Reverse drawing. For correct centerline estimation in the proximity of overlapping strokes (e.g., at junctions) (a), our algorithm first identifies the
ambiguous region (b,c) and removes the corresponding centerline estimates (d). From the intersections of the ambiguous region with the base centerlines (e),
continuous candidate centerlines (CCs) are computed (e,). Then the stroke curvatures of the CC's are evaluated (g), and the final centerline configuration is

selected (h).

Fig. 8. Smoothing. This image shows the result of the smoothing of cen-
terline paths for 0, 1, and 5 iterations. The movement of points is marked in
blue.

where the overlap starts, and the tip forms an endpoint, as illus-
trated by Figure 12(a). After such a structure is detected in the
topology extraction, the reverse drawing procedure treats it as any
other junction by selecting the straighter CCs, which results in the
appropriate representation of the spike.

5. VALIDATION AND RESULTS

We evaluate our approach on a variety of clean line drawings, in-
cluding production drawings from 2D short and feature anima-
tions (Figure 17). Of the paper examples, we include recently cre-

ALGORITHM 1: Centerline Selection Scheme.
Data: A junction with BCs and CCs
Result: A set of accepted BCs and CC's
foreach CC; do

Compute «;;

if o; > ¢ then reject CC; as sharp turn;
end
Put the remaining CC's in a list;
Sort list by ascending «;;
while the list is not empty do
Extract the straightest C'C; from the list and accept it;
if all BCs are connected then Terminate;

end

foreach disconnected BC; do
Extend BC; linearly until it crosses any accepted centerline

(either BC; or CC,;);
Accept BC;;

end

ACM Transactions on Graphics, Vol. 32, No. 1, Article 4, Publication date: January 2013.

Fig. 9. Stroke curvature. (a) and (b) illustrate the apparent difference in
visual smoothness of strokes with same centerline but different radii. (c)
shows the geometric reconstruction of the stroke curvature ¢« from the local
stroke radius r and curvature radius c.

VARV S Wi

Fig. 10. Examples of valence-4 junctions.

Fig. 11. Centerline selection. CCs are generated (a), and for each, the
stroke curvature is computed. Any CC (dashed) with curvature exceeding
the threshold is excluded. Sequentially (b,c,d), the CCs with the smallest
curvature are selected until all BC's are connected (d).

a [b c

Fig. 12. Spikes can be considered a special case of a junction, where one
of the branches is very short (a). (b-c) show respectively the topology and
the resulting centerlines for several spikes.

Topology-Driven Vectorization of Clean Line Drawings

4:7

Table I. Numerical Results and Ground-Truth Evaluation for Different Input Drawings
Name Input Image | Process | SSA CE SPE
Type Res. Time Valence 3 >3 % Valence > 3 | vs. ALT vs.Base | vs. ALT vs. Base
Alligator Scan Clean 20482 | 3m10s | 95.3% 88.8% 1.6% 176 % 125 % 159 % 138 %
Dracolion Digital 10247 29s 95.5% 100% 2.2% 279 % 177 % 145 % 144 %
Dr Facilier | Scan Clean 10242 46s 96.0% 75.0% 4.8% 168 % 120 % 181 % 157 %
Father Scan Rough | 20482 | 3m50s | 97.4% 97.4% 9.5% 186 % 140 % 270 % 156 %
Moose Scan Digital | 20482 | 3m27s | 98.6% 98.6% 8.2% 140 % 106 % 168 % 134 %
Mouse Digital 10247 Im 1s 95.8% 90.9% 8.0% 355 % 158 % 136 % 113 %
Muten Digital 1024% 24s 96.0% N/A 0% 212 % 125 % 379 % 288 %
Sheriff Digital 10247 55s 94.5% 94.5% 19.8% 187 % 123 % 145 % 115 %
See Section 5 for a detailed discussion (ALT: Adobe Live Trace, Base: base version of our algorithm, where no reverse drawing is applied).
gted drgwings, as well as an archival piece which has .degraclied —~— Average (6 drawings) -, Dracolion —_,— Moose
in quality over time and is therefore difficult to vectorize using ‘ ‘ ‘ ‘ ‘ ‘ ‘
existing techniques due to the age-related artifacts in the paper tex- =39 5
ture. We provide numerical and visual comparisons to two standard 9\; 25| |
commercial tools, Adobe Live Trace [Adobe 2010] and Harmony bo]
[ToonBoom 2010], as well as the Stentiford and Zhang-Suen thin- 1
ning algorithms (implemented in Wintopo [Sisoft.net 2010]). 1
5.1 Evaluation o ‘ ‘ ! ‘ ‘ ‘
20 30 40 50 60 70 80
In order to evaluate the accuracy of our centerline reconstruction and Stroke-Curvature Threshold t (degrees)
to compare it to existing methods, we used a dataset consisting of
Fig. 13. Stroke-curvature thresholding. To establish an empirically optimal

eight drawings (four scanned, four digitally drawn and then raster-
ized). In total, the drawings contain more than a thousand topologi-
cally relevant points (59.8% junctions, 40.2% endpoints), and about
two thousand centerlines. For the digitally created images, accurate
ground-truth centerlines are available. For the scanned drawings,
we asked an artist to manually trace the centerlines and highlight
the correct topological configuration at junctions. The results of the
evaluation are summarized in Table I. We evaluate the following
criteria.

Selection Scheme Accuracy (SSA). Algorithm 1 requires as input
a stroke-curvature threshold parameter ¢. To pick an appropriate
value, we proceeded as follows. For all images in our dataset, an
artist manually labeled all candidate centerlines as either smooth
or sharp turns, obtaining a dataset with more than 2000 classified
CCs. Then, as illustrated in Figure 13, we evaluated the percentage
of misclassified CCs against different thresholds ¢ and picked the
empirical optimum at ¢+ = 50°. To validate this choice, we then
performed a leave-one-out cross-validation (repeated for all draw-
ings). On average, our choice produces an optimum prediction error
of 1.99°, which corresponds to an error of 0.25% in terms of mis-
classified CCs. Overall, with the chosen threshold value t = 50°,
our algorithm produces results that match the artist’s classification
in 95.5% of the cases. Furthermore, we broke down the values
based on valence. Junctions with valence greater than 3 occurred
less frequently (5.7% of total), and were more difficult to classify
(accuracy 93.4%).

Centerline Error (CE). We evaluate centerline quality by com-
puting the average minimum distance of dense sample points on the
extracted centerlines to the ground-truth centerlines (see Figure 14).
The error with our approach has an average of only 4.13% of the av-
erage stroke thickness. We perform the same computation for Adobe
Live Trace, resulting in an average of 7.97%, and for the base version
of our algorithm (where no reverse drawing is applied) which shows
an average error of 5.38%. For the result in the specific drawings,

value of ¢, we built a dataset containing more than 2000 CC's, manually
labeled as either smooth or sharp turns. This image displays the classification
obtained with Algorithm 1, plotting percentage of misclassified CCs versus
the input threshold parameter 7. For cross-validation, we show the average
misclassification for 6 out of the 8 drawings, which suggests an optimal
threshold value 7, and finally we assess the quality of the prediction on the
two remaining drawings.

18%
16% |
A
O 14%|
=
L 12%]
 10%|
8%|
6%

4%]

2%
alligator dracolion facilier

m Our Method o Base Method = Live Trace

Centerlin

mouse

0%

father moose muten sheriff

Fig. 14. Centerline error. This image shows a comparison of the centerline
error for the results obtained with Adobe Live Trace, our method, and the
base version of our method, where no reverse drawing is applied. The values
are expressed as percentage of the average stroke thickness in each drawing.
Our method consistently produces a better score.

refer to the second to last column in Table I. Our method shows
consistent improvements of the centerline quality for all examples.

Salient Points Error (SPE). Junctions and endpoints are critical
elements in the vectorization of line drawings. The quality of a
reconstruction can be assessed by considering both the correctness
in the placement of these points as well as the correctness in the
overall topology. Given a drawing, consider two sets of salient points
G and M, from the ground truth and the method to be evaluated

ACM Transactions on Graphics, Vol. 32, No. 1, Article 4, Publication date: January 2013.

4:8 o G. Noris et al.
250% = Our Method o Base Method m Live Trace
° T T T T T T T
200%L 4
e
O 150%) i
2 100%|- i
)
50% I I I 4
RIUNANANANNR NN
alligator dracolion facilier father moose mouse muten sheriff

Fig. 15. Salient points error. This image shows a comparison of the salient
points error for the results obtained with Adobe Live Trace, our method, and
the base version of our method, where no reverse drawing is applied. The
values are expressed as percentage of the average stroke thickness in each
drawing. Our method consistently produces a better score.

respectively. We then compute

D= ZI}]EI(I;ldlSt(l, J)+ Zgre%ldtst(t, J)- 3)

ieM ” jeG

A good reconstruction should produce a set M that is as similar
as possible to G. In the case of correct topology, the contribution
of a pair i € M, j € G) will express the quality of the salient
point placement. However, if a method does not capture the correct
topology (by either missing a junction or detecting more junctions
than there actually are) mismatched pairs will penalize the score
with additional accumulated distance. Figure 15 shows the com-
parison of Adobe Live Trace and the base version of our method.
To assess the performance across our dataset, we normalized the
values D considering twice the number of salient points 2 - |G| in
each drawing.

5.2 Input Resolution and Clustering Robustness

The clustering step described in Section 4.1 samples the input image
to generate bands of moving pixels that stop when they meet. We
experimented with supersampling as a way to cope with very low
input resolutions. Even 1-pixel wide strokes, if supersampled appro-
priately with a smooth filter (in our tests: bicubic filter, 4 samples
per pixel), can be reconstructed accurately, leading to robustness
comparable to competing approaches.

As shown in Figure 16, the centerline error relative to the ground
truth (logarithmic scale) drops exponentially with increasing res-
olutions. Differences between our method and Adobe Live Trace
become more evident at higher resolutions.

5.3 Result Images

For a general overview of the capabilities of our method, we
present a selection of vectorization results in Figure 17, taken from
the eight drawings used in the previous section for error evaluation.
Notice how several ambiguous regions are properly handled, and
in most cases the proper junction configuration is selected. These
results combine the advantages of both the pixel clustering and the
reverse drawing.

Figure 18 illustrates the benefits of pixel clustering on its own.
Figure 18(a) and (b) show the vectorization results obtained with
Adobe Live Trace and Sisoft Wintopo. Figure 18(c) shows results
from only the base portion of our algorithm, where centerlines are
traced from the pixel clusters, but no reverse drawing is applied.
Notice how both medial axis and thinning methods (a,b) rely on the
creation of boundaries, usually obtained through color thresholding.

ACM Transactions on Graphics, Vol. 32, No. 1, Article 4, Publication date: January 2013.

—— Dracolion —— Father ——Facilier — - Live Trace —— Our Method

Centerline Error (px)

0.125 L. . . .
1024

512
Image Width (px)

Fig. 16. Effect of increasing the input resolution. Both our method and
Adobe Live Trace (dashed) exhibit an exponential reduction of the error.
Differences between the two methods become more evident at higher reso-
lutions.

However, with low thresholds, nearby strokes are not distinguished
properly, and with high values parts of the drawings are lost. Pre-
sharpening the images can alleviate these problems, but the proper
kernel size has to be used; in our experiments, this approach required
manual tuning to achieve good results. In contrast, our method suc-
cessfully separates nearby strokes, while avoiding stroke losses.

Finally, Figure 19 provides visual comparisons of our complete
method to leading commercial vectorization implementations, Toon
Boom Harmony [ToonBoom 2010], Adobe Live Trace [Adobe
2010], and SoftSoft Wintopo, respectively. Notice how the exist-
ing techniques have difficulties in discriminating nearby strokes,
which results in merged centerlines for separate strokes and an in-
correct drawing topology. Moreover, junction points are placed at
inaccurate positions. Our method finds a more natural placement.
For these comparisons, we attempted to tune the parameters of the
software packages to obtain the best possible results. Our method
uses the standard parameter values described in the previous sec-
tions and requires no per-drawing tuning.

5.4 Processing Time

The processing time of our method for each of the input images
is provided in Table I, measured on a desktop PC2. The time nec-
essary to process an image depends both on its resolution as well
as the number of strokes and junctions. Due to the more complex
topological analysis of a drawing, our algorithm requires more pro-
cessing time than tools such as Live Trace or Harmony. However,
the timings are still in the range of only a few seconds to minutes,
and the necessary time spent in postproduction to correct the cen-
terline estimates and junctions is significantly reduced compared to
the previously available solutions (see Figure 20).

For the Alligator example (Figure 17), we compared the timing
of manual postprocessing of the output to fix erroneous junctions
for Live Trace and our method: it took an artist 12 times longer to
produce comparable results for the Live Trace example.

5.5 Limitations and Future Work

An important application for this system is 2D animation. As is,
our system can be used in tandem with inbetweening techniques,
such as, Whited et al. [2010]. However, the vectorization quality
could be improved by considering the information contained in
subsequent frames, improving the decision making (Algorithm 1)
and recovering from errors in the topology. The difficulty however is

2Mac Pro, Quad-Core 2.66 GHz, 4GB RAM.

Topology-Driven Vectorization of Clean Line Drawings . 4:9

Moose

.}

Dr. Facilier | o pisney Enterprises, Inc. Alligator

Dracolion

g= =

- e
Father © Disney Enterprises, Inc.

Fig. 17. Collection of vectorization results generated with our method. The Father image is not fully clean (the paper quality is degraded and lines not sharp),

and thus represents a borderline case.

[Adobe Live Trace]
a q Adobe Live Trace b ‘
\ f _
\ ' 4 \ \
AT \] |
. . - .-\'\‘.
High Low— \‘r\

«_ |5isoft Wintopo c [Base Method
) " . K /"_ / =
71 N | r J
y High Low—

Fig. 18. Pixel clustering comparison. This image shows a comparison between Adobe Live Trace (a), Sisoft Wintopo (b), and the result of our base algorithm
(c), where only the base centerlines have been extracted, and no reverse drawing has been applied. In (a) and (b) different color threshold parameters have been
used. Notice how in order to get the nearby strokes separated, the color threshold must be set to high values, losing other parts of the drawing. Our method

successfully separates the strokes without such losses.

that distinct elements moving independently may drastically change
both the topology and the junction configurations, making these
extensions very challenging.

As for any raster-based method, image quantization and noise
play a crucial role. In the case of low-resolution input, details are
hard to extract (Figure 21(a)). In our tests with variable resolution
(see Figure 16) we observed a similar response for our method
and Adobe Live Trace, but in order to not break, that is, have
enough moving pixels, the proposed pixel clustering requires su-
persampling. Noise may lead to strokes being torn apart. Addition-
ally, we observe in Figure 16 the decay of the improvement rate
as the resolution increases. This is partly due to the error getting
closer to zero, but also to the difficulty in exploiting the additional
information.

While Algorithm 1 in most cases produces good results, there
may be cases of technical drawings, with grid structures or specific
texture-like patterns, where a failure of the algorithm appears in
many junctions, making manual fixing very time consuming. Here, a
possible approach would be to apply machine learning to update the
guiding criteria. The current spike detection relies on the presence
of particular topological structures, and might also be improved by

using machine learning in conjunction with the proposed stroke-
curvature measure to be able to explicitly extract sharp corners.

Finally there are some minor limitations. As shown in
Figure 21(b), our method is not designed to work with solid areas.
Additionally, as explained in Section 4.3, base centerlines that are
selected by Algorithm 1 for the final configuration are extended
linearly inside the ambiguous regions. Figure 21(c) shows a case
where this linear method results in a less accurate junction location
than the one obtained with higher-order extrapolation.

6. CONCLUSION

We have described a novel vectorization technique for clean line
drawings which produces a high-quality representation suitable
for vector processing. Our approach consists of two techniques:
a gradient-based pixel clustering that helps disambiguate difficult
cases, and a reverse drawing procedure which exploits the drawing
topology to make educated choices when dealing with junctions.
Since these techniques are independent, the reverse drawing can be
applied to improve the result of existing techniques that provide the
drawing topology.

ACM Transactions on Graphics, Vol. 32, No. 1, Article 4, Publication date: January 2013.

4:10 . G. Noris et al.

b Nl c

Fig. 19. General Comparison. This image shows close-up comparison between Adobe Live Trace (a), SiftSoft Wintopo (b), Toon Boom Harmony (c), our

method (d), and the ground truth (e).

Fig. 20. System output (a). With a user interaction of only a few seconds per junction, different configurations can be obtained (b). The interaction steps are
shown in (c-g). First, the user selects the junction (c), and activates the editing mode (d). BC's entry points (yellow dots) are used by the user to make the
desired changes. Once an entry point is clicked (e), the system shows a set of valid configurations to choose from (f). The first criterion is that the entry point
must be connected: 1 connection is favored over 2, 2 over 3, etc. Straighter CC's are the first choice, then linearly prolonged BBs, and finally, rejected CCs. If
a choice influences the connectivity of another entry point, that point is automatically selected, and possible configurations displayed (g). Previous choices are

marked in black. This process requires at most one choice per entry point.

Fig. 21. Limitations. With the current method, small details (a) may not be
captured by the topology extraction. The method is also not designed to work
with solid areas (b). (c) The linear extension of the base centerlines does
not always produce the best junction location (higher-order extrapolation
shown in blue).

We have demonstrated the application of our method to a variety
of professional examples. Our results show how our approach im-
proves the vectorization of junctions and nearby strokes which rep-
resent the major shortcomings of state-of-the-art solutions when it
comes to clean line drawings. Such accurate junction and centerline
recovery makes stroke-based editing operations such as automatic
inbetweening more feasible in a digital pipeline.

ACM Transactions on Graphics, Vol. 32, No. 1, Article 4, Publication date: January 2013.

Possible future directions include addressing the limitations of the
current method by exploring the vectorization of more sketchy and
noisy drawings, considering image prefiltering using LoG [Chen
et al. 1987]. Moreover, we are interested in studying the semantic
information present in sketchy drawings, considering strokes not
only as sets of pixels, but as objects with mathematical properties
(e.g., trajectory, direction) with the goal of exploiting such semantics
in a clustering approach.

REFERENCES

ADOBE, 2010. Illustrator. http://www.adobe.com/.

BARTOLO, A., CAMILLERI, K. P., FABRI, S. G. BORG, J. C., AND FARRUGIA,
P. J. 2007. Scribbles to vectors: Preparation of scribble drawings for
CAD interpretation. In Proceedings of the Conference on Sketch Based
Interfaces and Modeling. 123-130.

CHANG, H.-H. AND YAN, H. 1998. Vectorization of hand-drawn image using
piecewise cubic bezier curves fitting. Pattern Recogn. 31, 11, 1747-1755.

CHEN, J. S., HUERTAS, A., AND MEDIONI, G. 1987. Fast convolution with
laplacian-of-gaussian masks. IEEE Trans. Pattern Anal. Mach. Intell. 9,
584-590.

Topology-Driven Vectorization of Clean Line Drawings . 4:11

CORNEA, N. D., SILVER, D., AND MIN, P. 2007. Curve-Skeleton properties,
applications and algorithms. /IEEE Trans. Vis. Comput. Graph. 13, 3,
530-5438.

FrREEMAN, H. 1974. Computer processing of line-drawing images. ACM
Comput. Surv. 6, 1,57-97.

HiLAIRE, X. AND ToMBRE, K. 2006. Robust and accurate vectorization of
line drawings. IEEE Trans. Pattern Anal. Mach. Intell. 28, 6, 890-904.
JANSSEN, R. D. T. AND VOSSEPOEL, A. M. 1997. Adaptive vectorization of

line drawing images. Comput. Vis. Image Understand. 65, 1, 38-56.

KirBaAs, C. AND QUEK, F. K. H. 2000. A review of vessel extraction techniques
and algorithms. ACM Comput. Surv. 36, 81-121.

KLEINBERG, J. AND TARDOS, E. 2005. Algorithm Design. Addison-Wesley
Longman Publishing Co., Inc.

LaksHMI, J. K. AND PUNITHAVALLI, M. 2009. A survey on skeletons in digital
image processing. In Proceedings of the International Conference on
Digital Image Processing. IEEE Computer Society, Los Alamitos, CA,
260-269.

Lawm, L., LEE, S.-W., AND SUEN, C. Y. 1992. Thinning methodologies — a
comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14, 9,
869-885.

LEecor, G. AND LEvY, B. 2006. ARDECO: Automatic region Detection and
Conversion. In Proceedings of the Eurographics Symposium on Rendering
(EGSR ‘06). 349-360.

ORZAN, A., BOUSSEAU, A., WINNEMOLLER, H., BARLA, P., THOLLOT, J., ET AL.
2008. Diffusion curves: A vector representation for smooth-shaded im-
ages. ACM Trans. Graph. 27, 3.

SISOFT.NET, 2010. Wintopo. http://wintopo.com/.

Sun, J., LIANG, L., WEN, F, aAND SHuM, H.-Y. 2007. Image vector-
ization using optimized gradient meshes. ACM Trans. Graph. 26, 3,
11.

SYKORA, D., BURIANEK, J., AND ZARA, J. 2005. Video codec for clas-
sical cartoon animations with hardware accelerated playback. In Pro-
ceedings of the International Symposium on Visual Computing. 43—
50.

TooNBoowm, 2010. Harmony. http://www.toonboom.com/.

‘WHITED, B., ROSSIGNAC, J., SLABAUGH, G., FANG, T., AND UNAL, G. 2009.
Pearling: Stroke segmentation with crusted pearl strings. Pattern Recogn
Image Anal. 19, 2, 277-283.

WHITED, B., Noris, G., SIMMONS, M., SUMNER, R. W., GROsS, M., ET AL.
2010. BetweenIT: An interactive tool for tight inbetweening. Comput.
Graph. Forum 29, 2.

Xia, T., Liao, B., AND YU, Y. 2009. Patch-based image vectorization with
automatic curvelinear feature alignment. ACM Trans. Graph. 28, 5, 1-
10.

ZHANG, S.-H., CHEN, T., ZHANG, Y.-F., Hu, S.-M., AND MARTIN, R. R. 2009.
Vectorizing cartoon animations. /[EEE Trans. Vis. Comput. Graph. 15, 4,
618-629.

Zou, J. J., AND YAN, H. 2001. Cartoon image vectorization based on shape
subdivision. In Proceedings of the International Conference on Computer
Graphics. 225-231.

Received December 2010; revised March 2012; accepted May 2012

ACM Transactions on Graphics, Vol. 32, No. 1, Article 4, Publication date: January 2013.

